3D漫画是对人脸的夸张的3D描述。本文的目的是对紧凑的参数空间中的3D漫画的变化进行建模,以便我们可以为处理3D漫画变形提供有用的数据驱动工具包。为了实现目标,我们提出了一个基于MLP的框架,用于构建可变形的表面模型,该模型采用潜在代码并产生3D表面。在框架中,警笛MLP模拟了在固定模板表面上采用3D位置并返回输入位置的3D位移向量的函数。我们通过学习采用潜在代码并产生MLP参数的超网络来创建3D表面的变化。一旦了解到,我们的可变形模型为3D漫画提供了一个不错的编辑空间,支持基于标签的语义编辑和基于尖的基于尖的变形,这两者都产生了高度夸张和自然的3D讽刺形状。我们还展示了可变形模型的其他应用,例如自动3D漫画创建。
translated by 谷歌翻译
我们专注于在黑框设置中对模型的对抗性攻击的问题,攻击者旨在制作对受害者模型的查询访问有限的对抗性示例。现有的黑框攻击主要基于贪婪的算法,使用预先计算的关键位置来扰动,从而严重限制了搜索空间,并可能导致次优的解决方案。为此,我们提出了使用贝叶斯优化的查询有效的黑盒攻击,该贝叶斯优化使用自动相关性确定(ARD)分类内核动态计算重要位置。我们引入了块分解和历史次采样技术,以提高输入序列长时间时贝叶斯优化的可伸缩性。此外,我们开发了一种优化后算法,该算法找到了具有较小扰动大小的对抗示例。关于自然语言和蛋白质分类任务的实验表明,与先前的最新方法相比,我们的方法始终达到更高的攻击成功率,查询计数和修改率的显着降低。
translated by 谷歌翻译
尽管运动补偿大大提高了视频质量,但单独执行运动补偿和视频脱张需要大量的计算开销。本文提出了一个实时视频Deblurring框架,该框架由轻巧的多任务单元组成,该单元以有效的方式支持视频脱张和运动补偿。多任务单元是专门设计的,用于使用单个共享网络处理两个任务的大部分,并由多任务详细网络和简单的网络组成,用于消除和运动补偿。多任务单元最大程度地减少了将运动补偿纳入视频Deblurring的成本,并实现了实时脱毛。此外,通过堆叠多个多任务单元,我们的框架在成本和过度质量之间提供了灵活的控制。我们通过实验性地验证了方法的最先进的质量,与以前的方法相比,该方法的运行速度要快得多,并显示了实时的实时性能(在DVD数据集中测量了30.99db@30fps)。
translated by 谷歌翻译
基于训练学习的脱毛方法需要大量的模糊和尖锐的图像对。不幸的是,现有的合成数据集还不够现实,对其进行训练的Deblurring模型无法有效处理真正的模糊图像。尽管最近提出了真实的数据集,但它们提供了有限的场景和相机设置,并且为不同的设置捕获真实数据集仍然具有挑战性。为了解决这一问题,本文分析了各种因素,这些因素引入了真实和合成模糊图像之间的差异。为此,我们提出了RSBlur,这是一个具有真实图像的新型数据集和相应的尖锐图像序列,以详细分析真实和合成模糊之间的差异。使用数据集,我们揭示了不同因素在模糊生成过程中的影响。基于分析,我们还提出了一种新型的模糊合成管道,以综合更现实的模糊。我们表明,我们的合成管道可以改善实际模糊图像上的脱毛性能。
translated by 谷歌翻译
深度神经网络已成为现代图像识别系统的驱动力。然而,神经网络对抗对抗性攻击的脆弱性对受这些系统影响的人构成严重威胁。在本文中,我们专注于一个真实的威胁模型,中间对手恶意拦截和erturbs网页用户上传在线。这种类型的攻击可以在简单的性能下降之上提高严重的道德问题。为了防止这种攻击,我们设计了一种新的双层优化算法,该算法在对抗对抗扰动的自然图像附近找到点。CiFar-10和Imagenet的实验表明我们的方法可以有效地强制在给定的修改预算范围内的自然图像。我们还显示所提出的方法可以在共同使用随机平滑时提高鲁棒性。
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
Cellular automata (CA) captivate researchers due to teh emergent, complex individualized behavior that simple global rules of interaction enact. Recent advances in the field have combined CA with convolutional neural networks to achieve self-regenerating images. This new branch of CA is called neural cellular automata [1]. The goal of this project is to use the idea of idea of neural cellular automata to grow prediction machines. We place many different convolutional neural networks in a grid. Each conv net cell outputs a prediction of what the next state will be, and minimizes predictive error. Cells received their neighbors' colors and fitnesses as input. Each cell's fitness score described how accurate its predictions were. Cells could also move to explore their environment and some stochasticity was applied to movement.
translated by 谷歌翻译
There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
In this paper, we learn a diffusion model to generate 3D data on a scene-scale. Specifically, our model crafts a 3D scene consisting of multiple objects, while recent diffusion research has focused on a single object. To realize our goal, we represent a scene with discrete class labels, i.e., categorical distribution, to assign multiple objects into semantic categories. Thus, we extend discrete diffusion models to learn scene-scale categorical distributions. In addition, we validate that a latent diffusion model can reduce computation costs for training and deploying. To the best of our knowledge, our work is the first to apply discrete and latent diffusion for 3D categorical data on a scene-scale. We further propose to perform semantic scene completion (SSC) by learning a conditional distribution using our diffusion model, where the condition is a partial observation in a sparse point cloud. In experiments, we empirically show that our diffusion models not only generate reasonable scenes, but also perform the scene completion task better than a discriminative model. Our code and models are available at https://github.com/zoomin-lee/scene-scale-diffusion
translated by 谷歌翻译